- 相關推薦
初中數學一次函數相關公式
一次函數
表達式為y=kx+b(k≠0,k、b均為常數)的函數,叫做y是x的一次函數,當k>0時,y的值隨x值的增大而增大,當k<0時,y的值隨x值的增大而減小。當b=0時稱y為x的正比例函數,正比例函數是一次函數中的特殊情況。當常數項為零時的一次函數,可表示為y=kx(k≠0),這時的常數k也叫比例系數,正比例函數的y值是隨著x值的增大。
y關于自變量x的一次函數有如下關系:
1.y=kx+b (k為任意不為0的常數,b為任意實數)
當x取一個值時,y有且只有一個值與x對應。如果有2個及以上個值與x對應時,就不是一次函數。
x為自變量,y為因變量,k為常數,y是x的一次函數。
特別的,當b=0時,y是x的正比例函數。即:y=kx (k為常量,但k≠0)正比例函數圖像經過原點。
定義域:自變量x的取值范圍。自變量的取值一要使函數有意義;二要與實際相符合。
常用的表示方法:解析法、圖像法、列表法。
函數性質
1.在正比例函數時,x與y的商一定。在反比例函數時,x與y的積一定。
在y=kx+b(k,b為常數,k≠0)中,當x增大m倍時,函數值y則增大 m倍,反之,當x減少m倍時,函數值y則減少 m倍。
2.當x=0時,b為一次函數圖像與y軸交點的縱坐標,該點的坐標為(0,b)。
3.當b=0時,一次函數變為正比例函數。當然正比例函數為特殊的一次函數。
4.在兩個一次函數表達式中:
當兩個一次函數表達式中的k相同,b也相同時,則這兩個一次函數的圖像重合;
當兩個一次函數表達式中的k相同,b不相同時,則這兩個一次函數的圖像平行;
當兩個一次函數表達式中的k不相同,b不相同時,則這兩個一次函數的圖像相交;
當兩個一次函數表達式中的k不相同,b相同時,則這兩個一次函數圖像交于y軸上的同一點(0,b);
當兩個一次函數表達式中的k互為負倒數時,則這兩個一次函數圖像互相垂直。
5.兩個一次函數(y1=k1x+b1,y2=k2x+b2)相乘時(k≠0),得到的的新函數為二次函數,
該函數的對稱軸為-(k2b1+k1b2)/(2k1k2);
當k1,k2正負相同時,二次函數開口向上;
當k1,k2正負相反時,二次函數開口向下。
二次函數與y軸交點為(0,b2b1)。
6.兩個一次函數(y1=ax+b,y2=cx+d)之比,得到的新函數y3=(ax+b)/(cx+d)為反比性函數,漸近線為x=-b/a,y=c/a。
一次函數的學習關乎后面的各種函數知識吸收,只有基礎打好了,后面的內容就不用擔心。
[初中數學一次函數相關公式]
【初中數學一次函數相關公式】相關文章:
初中數學公式08-09
初中數學函數公式05-14
初中數學定理公式08-14
初中數學正弦定理公式08-11
初中數學公式總結09-09
初中數學代數公式大全10-23
初中數學公式定理05-31
初中數學公式定理大全10-28
初中數學比例的基本性質和公式07-04
小升初數學公式:工程問題公式09-21