關于八年級數學教案集錦八篇
作為一名老師,時常要開展教案準備工作,編寫教案有利于我們科學、合理地支配課堂時間。快來參考教案是怎么寫的吧!下面是小編收集整理的八年級數學教案8篇,歡迎大家分享。
八年級數學教案 篇1
一、教學目標
1.使學生理解并掌握分式的概念,了解有理式的概念;
2.使學生能夠求出分式有意義的條件;
3.通過類比分數研究分式的教學,培養學生運用類比轉化的思想方法解決問題的能力;
4.通過類比方法的教學,培養學生對事物之間是普遍聯系又是變化發展的辨證觀點的再認識.
二、重點、難點、疑點及解決辦法
1.教學重點和難點 明確分式的`分母不為零.
2.疑點及解決辦法 通過類比分數的意義,加強對分式意義的理解.
三、教學過程
【新課引入】
前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數的經驗,可猜想到分式)
【新課】
1.分式的定義
(1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:
用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.
(2)由學生舉幾個分式的例子.
(3)學生小結分式的概念中應注意的問題.
①分母中含有字母.
②如同分數一樣,分式的分母不能為零.
(4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]
2.有理式的分類
請學生類比有理數的分類為有理式分類:
例1 當取何值時,下列分式有意義?
(1);
解:由分母得.
∴當時,原分式有意義.
(2);
解:由分母得.
∴當時,原分式有意義.
(3);
解:∵恒成立,
∴取一切實數時,原分式都有意義.
(4).
解:由分母得.
∴當且時,原分式有意義.
思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?
例2 當取何值時,下列分式的值為零?
(1);
解:由分子得.
而當時,分母.
∴當時,原分式值為零.
小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.
(2);
解:由分子得.
而當時,分母,分式無意義.
當時,分母.
∴當時,原分式值為零.
(3);
解:由分子得.
而當時,分母.
當時,分母.
∴當或時,原分式值都為零.
(4).
解:由分子得.
而當時,,分式無意義.
∴沒有使原分式的值為零的的值,即原分式值不可能為零.
(四)總結、擴展
1.分式與分數的區別.
2.分式何時有意義?
3.分式何時值為零?
(五)隨堂練習
1.填空題:
(1)當時,分式的值為零
(2)當時,分式的值為零
(3)當時,分式的值為零
2.教材P55中1、2、3.
八、布置作業
教材P56中A組3、4;B組(1)、(2)、(3).
九、板書設計
課題 例1
1.定義例2
2.有理式分類
八年級數學教案 篇2
教學目標
一、教學知識點:
1.旋轉的定義.2.旋轉的基本性質.
二、能力訓練要求:
1.通過具體實例認識旋轉,理解旋轉的基本涵義.
2.探索旋轉的基本性質,理解旋轉前后兩個圖形對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角彼此相等的性質.
三、情感與價值觀要求
1.經歷對生活中與旋轉現象有關的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關畫圖的操作技能,發展初步的審美能力,增強對圖形欣賞的意識.
2.通過學習使學生能用數學的眼光看待生活中的有關問題,進一步發展學生的數學觀.
教學重點:旋轉的基本性質.
教學難點:探索旋轉的基本性質.
教學方法:
1、遵循學生是學習的主人的原則,在為學生創造大量實例的基礎上,引導學生自主思考、交流、討論、歸納、學習。
2、采用多媒體課件輔助教學。
教學過程:
一.巧設情景問題,引入課題
日常生活中,我們經常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉動、汽車方向盤的轉動、轆轤打水的情景). (1)上面情景中的轉動現象,有什么共同特征?(2)鐘表的指針、鐘擺在轉動過程中,其形狀、大小、位置是否發生改變?汽車方向盤的轉動呢?
1.在這些轉動的現象中,它們都是繞著一個點轉動的.
2.每個物體的轉動都是向同一個方向轉動.
3.鐘表的指針、鐘擺在轉動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.
4.汽車的方向盤在轉動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學們觀察得很仔細,我們把這樣的轉動叫旋轉(circumrotate),這節課我們就來探討生活中的旋轉.
二.講授新課
在數學中,如何定義旋轉呢?在平面內,將一個圖形繞著一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉(circumrotate).這個定點稱為旋轉中心,轉動的角稱為旋轉角.注意:“將一個圖形繞一個定點沿某個方向轉動一個角度”意味著圖形上的每個點同時都按相同的方式轉動相同的角度.在物體繞著一個定點轉動時,它的形狀和大小不變.因此,旋轉具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁)答:(1)旋轉中心是O點,旋轉角是∠AOD.旋轉角還可以是∠BOE.
(2)四邊形AOBC繞O點旋轉到四邊形DOEF的位置.這時點A旋轉到點D的位置,點B旋轉到點E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉到OD的位置,指針的長短、形狀沒有變化,所以OA與OD是相等的.同樣,線段OB與OE是相等的.
(4)因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,在旋轉的過程中,圖形上的每個點同時都按相同的`方向旋轉相同的角度,所以∠AOD與∠BOE是相等的.
(4)也可以這樣理解:因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.
看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉得到的,經過旋轉,點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應點.從剛才大家得出的結論中,能否總結出旋轉的性質呢?
答:因為O是旋轉中心,點A與點D是對應點,點B與點E是對應點,且OA=OD,OB=OE,所以可以知道:對應點與旋轉中心所連的線段的長度是相等的.
因為點A與點D、點B與點E是對應點,且∠AOD=∠BOE,所以由此可以知道:對應點與旋轉中心的連線所成的角是互相相等的.
由此我們得到了旋轉的基本性質:經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度.任意一對對應點與旋轉中心的連線所成的角都是旋轉角,旋轉角彼此相等.對應點到旋轉中心的距離相等.
[例1](課本68頁例1)
[師生共析]經演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉的,它旋轉一周時的度數是360°,一周需要60分,因此每分鐘分針所轉過的度數是6°,這樣20分時,分針逆轉的角度即可求出.
解:(見課本68頁)
書上68頁做一做
三.課堂練習
課本P69隨堂練習.
1.解:旋轉5次得到,旋轉的角度分別等于60°、120°、180°、240°、300°.
四.課時小結
五.課后作業:課本P69習題3.4 1、2、3.
六.活動與探究
1.分析圖中的旋轉現象.過程:讓學生畫圖、找規律,也可讓他們通過剪切,找到旋轉規律.
結果:旋轉現象為:
整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續旋轉45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.
整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續旋轉90°、180°、270°前后的圖形共同組成的.
整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉180°前后的圖形共同組成的.
2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉得到的?
過程:同樣讓學生在畫圖過程中體會圖形中每個三角形之間的關系;或讓學生仔細觀察圖形,分析圖形,找出關系.
結果:圖中存在這樣的三角形,其中一個是另一個通過旋轉得到的.
整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續旋轉90°、180°、 270°.前后的圖形共同組成的.
整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉180°前后的圖形共同組成的.
板書設計:略
教學反思:本節課仍然是圖形的基本變換。借助多媒體教學直觀生動形象。學生一般都能在教師的指導下掌握。也在培養學生的空間想象能力。
八年級數學教案 篇3
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;
2、能力目標:
①,在實踐操作過程中,逐步探索圖形之間的平移關系;
②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;
3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結合。使用多媒體課件輔助教學。
四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學設計:
創設情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個圖案有什么特點?
(2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的.大小、形狀、位置是否發生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。
暢所欲言,互相補充。
課堂小結:
在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。
課堂練習:
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。
八年級數學教案 篇4
一、創設情境
1.一次函數的圖象是什么,如何簡便地畫出一次函數的圖象?
(一次函數y=kx+b(k≠0)的圖象是一條直線,畫一次函數圖象時,取兩點即可畫出函數的圖象).
2.正比例函數y=kx(k≠0)的圖象是經過哪一點的直線?
(正比例函數y=kx(k≠0)的圖象是經過原點(0,0)的一條直線).
3.平面直角坐標系中,x軸、y軸上的點的坐標有什么特征?
4.在平面直角坐標系中,畫出函數的圖象.我們畫一次函數時,所選取的兩個點有什么特征,通過觀察圖象,你發現這兩個點在坐標系的什么地方?
二、探究歸納
1.在畫函數的圖象時,通過列表,可知我們選取的點是(0,-1)和(2,0),這兩點都在坐標軸上,其中點(0,-1)在y軸上,點(2,0)在x軸上,我們把這兩個點依次叫做直線與y軸與x軸的交點.
2.求直線y=-2x-3與x軸和y軸的'交點,并畫出這條直線.
分析x軸上點的縱坐標是0,y軸上點的橫坐標0.由此可求x軸上點的橫坐標值和y軸上點的縱坐標值.
解因為x軸上點的縱坐標是0,y軸上點的橫坐標0,所以當y=0時,x=-1.5,點(-1.5,0)就是直線與x軸的交點;當x=0時,y=-3,點(0,-3)就是直線與y軸的交點.
過點(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.
所以一次函數y=kx+b,當x=0時,y=b;當y=0時,.所以直線y=kx+b與y軸的交點坐標是(0,b),與x軸的交點坐標是.
三、實踐應用
例1若直線y=-kx+b與直線y=-x平行,且與y軸交點的縱坐標為-2;求直線的表達式.
分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點的縱坐標為-2,可求出b的值.
解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點的縱坐標為-2,所以b=-2,因此所求的直線的表達式為y=-x-2.
例2求函數與x軸、y軸的交點坐標,并求這條直線與兩坐標軸圍成的三角形的面積.
分析求直線與x軸、y軸的交點坐標,根據x軸、y軸上點的縱坐標和橫坐標分別為0,可求出相應的橫坐標和縱坐標?
八年級數學教案 篇5
一、 教學目標
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點、難點
1.重點:理解分式有意義的條件.
2.難點:能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學生填寫P127[思考],學生自己依次填出:,,,.
2.學生看問題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時間,與以最大航速逆流航行60 所用時間相等,江水的流速為多少?
請同學們跟著教師一起設未知數,列方程.
設江水的流速為v /h.
輪船順流航行90 所用的時間為小時,逆流航行60 所用時間小時,所以=.
3. 以上的式子,,,,有什么共同點?它們與分數有什么相同點和不同點?
四、例題講解
P128例1. 當下列分式中的.字母為何值時,分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解
出字母的取值范圍.
[補充提問]如果題目為:當字母為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學生一題二用,也可以讓學生更全面地感受到分式及有關概念.
(補充)例2. 當為何值時,分式的值為0?
(1) (2) (3)
[分析] 分式的值為0時,必須同時滿足兩個條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.
[答案] (1)=0 (2)=2 (3)=1
五、隨堂練習
1.判斷下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 當x取何值時,下列分式有意義?
(1) (2) (3)
3. 當x為何值時,分式的值為0?
(1) (2) (3)
六、課后練習
1.下列代數式表示下列數量關系,并指出哪些是正是?哪些是分式?
(1)甲每小時做x個零件,則他8小時做零件 個,做80個零件需 小時.
(2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是 千米/時,輪船的逆流速度是 千米/時.
(3)x與的差于4的商是 .
2.當x取何值時,分式 無意義?
3. 當x為何值時,分式 的值為0?
八年級數學教案 篇6
總課時:7課時 使用人:
備課時間:第八周 上課時間:第十周
第4課時:5、2平面直角坐標系(2)
教學目標
知識與技能
1.在給定的直角坐標系下,會根據坐標描出點的位置;
2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。
過程與方法
1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發展學生的數形結合思想,培養學生的合作 交流能力;
2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養學生的轉化意識。
情感態度與價值觀
通過生動有趣的教學活動,發展學生的合情推理能力和豐富的情感、態度,提高學生學習數學的興趣。
教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學過程
第一環節 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)
在上節課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的'點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。
練習:指出下列 各點以及所在象限或坐標軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取學生作答)
由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節課的內容。
第二環節 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學生操作完畢后)
2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?
(出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標系畫,要求每位同學獨立完成。
(學生描點、畫圖)
(拿出一位做對的學生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環節 學有所用.(10分鐘,先獨立完成,后小組討論)
(補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。
先獨立完成,然后小組討論是否正確。
第四環節 感悟與收獲(5分鐘,學生總結,全班交流)
本節課在復習上節課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。
在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。
第五環節 布置作業
習題5、4
A組(優等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級數學教案 篇7
第一步:情景創設
乒乓球的標準直徑為40mm,質檢部門從A、B兩廠生產的乒乓球中各抽取了10只,對這些乒乓球的直徑了進行檢測。結果如下(單位:mm):
A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你認為哪廠生產的乒乓球的直徑與標準的誤差更小呢?
(1)請你算一算它們的平均數和極差。
(2)是否由此就斷定兩廠生產的乒乓球直徑同樣標準?
今天我們一起來探索這個問題。
探索活動
通過計算發現極差只能反映一組數據中兩個極值之間的大小情況,而對其他數據的波動情況不敏感。讓我們一起來做下列的數學活動
算一算
把所有差相加,把所有差取絕對值相加,把這些差的平方相加。
想一想
你認為哪種方法更能明顯反映數據的波動情況?
第二步:講授新知:
(一)方差
定義:設有n個數據,各數據與它們的平均數的差的平方分別是,…,我們用它們的平均數,即用
來衡量這組數據的波動大小,并把它叫做這組數據的方差(variance),記作。
意義:用來衡量一批數據的波動大小
在樣本容量相同的情況下,方差越大,說明數據的波動越大,越不穩定
歸納:(1)研究離散程度可用(2)方差應用更廣泛衡量一組數據的波動大小
(3)方差主要應用在平均數相等或接近時
(4)方差大波動大,方差小波動小,一般選波動小的
方差的簡便公式:
推導:以3個數為例
(二)標準差:
方差的算術平方根,即④
并把它叫做這組數據的標準差.它也是一個用來衡量一組數據的波動大小的重要的'量.
注意:波動大小指的是與平均數之間差異,那么用每個數據與平均值的差完全平方后便可以反映出每個數據的波動大小,整體的波動大小可以通過對每個數據的波動大小求平均值得到。所以方差公式是能夠反映一組數據的波動大小的一個統計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數據波動大小的其他統計量。
八年級數學教案 篇8
知識技能
1.了解兩個圖形成軸對稱性的性質,了解軸對稱圖形的性質。
2.探究線段垂直平分線的性質。
過程方法
1.經歷探索軸對稱圖形性質的過程,進一步體驗軸對稱的特點,發展空間觀察。
2.探索線段垂直平分線的性質,培養學生認真探究、積極思考的能力。
情感態度價值觀通過對軸對稱圖形性質的探索,促使學生對軸對稱有了更進一步的認識,活動與探究的過程可以更大程度地激發學生學習的主動性和積極性,并使學生具有一些初步研究問題的能力。
教學重點
1.軸對稱的性質。
2.線段垂直平分線的性質。
教學難點體驗軸對稱的特征。
教學方法和手段多媒體教學
過程教學內容
引入中垂線概念
引出圖形對稱的'性質第一張幻燈片
上節課我們共同探討了軸對稱圖形,知道現實生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續來研究軸對稱的性質。
幻燈片二
1、圖中的對稱點有哪些?
2、點A和A的連線與直線MN有什么樣的關系?
理由?:△ABC與△ABC關于直線MN對稱,點A、B、C分別是點A、B、C的對稱點,設AA交對稱軸MN于點P,將△ABC和△ABC沿MN對折后,點A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經過線段AA、BB和CC的中點。
我們把經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
定義:經過線段的中點并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。
【八年級數學教案】相關文章:
有關八年級數學教案八年級數學教案全套10-03
八年級數學教案12-04
八年級數學教案03-05
【熱門】八年級數學教案01-31
八年級數學教案【推薦】01-20
【精】八年級數學教案01-21
八年級數學教案【薦】02-01
【薦】八年級數學教案01-17
八年級上冊數學教案01-13
八年級數學教案(推薦)06-21